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Abstract

The goal of assembly planning consists in generating feasible sequences to assemble a product and selecting an efficient assembly
sequence from which related constraint factors such as geometric features, assembly time, tools, and machines are considered to arrange
a feasible assembly sequence based on planner’s individual heuristics. Suchlike planning may implement genetic algorithms to go towards
the assembly sequence features of speed and flexibility. As regards the large constraint assembly problems, however, traditional genetic
algorithms will generate a great deal of infeasible solutions in the evolution process which results in inefficiency of the solution-searching
process. Guided genetic algorithms proposed by Tseng, then, got over the restrictions of traditional GAs by means of a new evolution
procedure. However, Guided-GAs dealt with the assembly sequence problem in the feasible solution range simply. They were conse-
quently inclined to lapse into the local optimal situation and fall short of the expectations. This paper attempts to add global search
algorithms not only based on GAs but also treated of the Guided-GAs as the local search mechanism. The proposed novel method under
the name of memetic algorithms for assembly sequence planning is possessed of the competence for detecting the optimal/near-optimal
solution with respect to large constraint assembly perplexity. Also, actual examples are presented to illustrate the feasibility and potential
of the proposed MAs approach. It has been confirmed that MAs satisfactorily provide superior solutions for assembly sequence prob-
lems on the strength of comparison with Guided-GAs.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Assembly sequence planning (ASP) refers to a task for
which planners, on the basis of relationships among com-
ponents in respect of the geometric limitation factors such
as assembly time, geometric features, tools, and machines,
arrange a specific assembly sequence according to the prod-
uct design description. An ASP plays an important role on
the fields of CAD/CAM design issues, the cost of assem-
bly/manufacturing, as well as the selection of equipment.
In the past, a significant amount of publications in this area
has been implemented from various viewpoints related to
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the fact that there is an enormous number of different char-
acteristics and objectives according to the planning envi-
ronment (Abdullah, Popplewhell, & Page, 2003; Zha,
Lim, & Fok, 1998).

In solving the assembly planning problem, most
researchers made their proposal on the basis of De Fazio
and Whitney’s (1987) liaison graph, thereby combining
graph theory and an exhaustive search method to approach
the problem (Baldwin, Abel, Lui, De Fazio, & Whitney,
1991; Homem De Mello & Sanderson, 1991; Gottipolu &
Ghosh, 1997). Although it is possible to find feasible solu-
tions or even optimal solutions by means of graph theory,
there exist difficulties to identify the global-optimal solu-
tion in a short time period. Moreover, the scale of the prob-
lem space is extremely restricted. Genetic Algorithms
(GAs) have recently become popular global optimization
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Table 1
Classification of fastener types according to Akagi et al. (1980)

Type Code Example

Fixed fastener

Disassembled FD Screw, bolted joint, key, spline, wedge
Not disassembled FND Pressing fits, riveted joints, welding

Movable fastener

Disassembled MD Snap ring, bearing, spring
Not disassembled MND Races and ball-bearing balls

(1) FD, fixed fastener disassembled, (2) FND, fixed fastener not disas-
sembled, (3) MD, movable fastener disassembled, (4) MND, movable
fastener not disassembled.
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techniques, specifically in combinatorial optimization. A
GA investigates the feasible space by subsidizing popula-
tions of solutions, which evolve by reproduction, crossover
and mutation operators. One of the GA’s characteristics is
the multiple points’ search, which discriminates the GA
from the other random search methods. As a result, many
researchers have tried to apply GAs to assembly planning
problems lately (Dini, Failli, Lazzerini, & Marcelloni,
1999; Fujimoto & Sebaaly, 2000; Guan, Liu, & Zhong,
2002; Smith & Smith, 2003). Most importantly, the results
of the aforementioned studies demonstrate that using GAs
is evidently better than the traditional graph-searching
method.

The foregoing searching methods are mainly based on
De Fazio and Whitney’s liaison graph for product descrip-
tion. Applying dissimilar approach from the liaison graph,
Tseng and Li (1999) proposed a connector-based assembly
planning model. In their study, connectors functioned as
assembly elements in product description and served as
concept product building blocks in the design stage.
Accordingly, more distinguishing engineering features can
be included, and the degree of complexity in assembly plan-
ning can be effectively reduced. In addition, Yin, Ding, Li,
and Xiong (2003) tried to expand the application of con-
nectors and thereby took into consideration the reuse con-
text of assembly planning. Tseng, Li, and Chang (2004)
utilized GAs in a connector-based environment, attempting
to incorporate the advantages of connectors and GA con-
cepts. Subsequently, Tseng and Tang (2006) sequentially
integrated the problem between assembly sequence plan-
ning and assembly line balancing. In addition, manufactur-
ers typically divide assembly planning into three phases:
selecting an assembly method, assembly sequence planning,
and assembly operations planning (Smith & Smith, 2003).
The connector-based approach addressed in this paper is
in point of assembly sequence planning.

The model proposed by Tseng et al. (2004) was executed
by traditional GA procedure which was termed TGAs.
Nevertheless, the TGAs approach was a mere random
and blind-searching procedure in which had a tendency
to generate a great deal of infeasible solutions during the
evolution procedure, especially arduous to find feasible
solution associated with large constraint assembly prob-
lems. Afterward, Tseng (2006) developed a new method
defined as guided genetic algorithms (Guided-GAs) which
succeed in overcoming the assembly planning problems
with regard to large-scale constraints. Implementing
Guided-GAs, initial feasible solutions are setting through
the binary-tree algorithms before the evolution process
starts. Furthermore, an improvement in the crossover
and mutation mechanism will be conducive to solve the
enormous infeasible solutions in the evolution process.

However, this mechanism, Guided-GA, deals with the
assembly sequence problem in the feasible region, and
maybe results in insufficient chromosome changes, but
inclines towards lapsed into the local optimum searching.
Accordingly, the goal of this study attempts to provide a
higher-quality solution method than Guided-GAs. Mos-
cato (1992) introduced the term ‘‘memetic algorithms’’
(MAs) which combines evolutionary algorithms with the
intensification power of a local search, and has a pragmatic
perspective for better effects than GAs. As such MAs, a
local optimizer is applied to each offspring before it is
inserted into the population in order to make it towards
optimum and then GAs platform as a means to accomplish
global exploration within a population. MAs are being
used for several NP optimization problem such as schedul-
ing problem (Fransca, Mendes, & Moscato, 2001;
Maheswaran, Ponnambalam, & Aravindan, 2005), cell for-
mation problem (Muruganandam, Prabhaharan, Asokan,
& Baskaran, 2005), multistage capacitated lot sizing prob-
lem (Berretta & Rodrigues, 2004) and many others,
respectively.

Incorporing Guided-GAs proposed by Tseng (2006) as a
local constraint solver into the MA mechanism, the
authors employ a traditional genetic algorithm as the ran-
dom permutation method. The remainder of the paper is
structured as follows. In Section 2, the contents of connec-
tors are discussed. Section 3 reports the details of the pro-
cedure of memetic algorithms for assembly sequence
planning. Section 4 verifies and exemplifies the proposed
algorithm through various down-to-earth examples and a
comparison of the performance of our algorithm with ear-
lier proposed heuristics. Finally, Section 5 will present
some final comments on the presented approach.

2. Concepts and engineering data of connectors

2.1. Content of connectors

This paper deliberates upon the engineering information
of connectors like combination, tool, direction and connec-
tor-based precedence graph (Tseng et al., 2004). They are
described as follows:

(1) Combination. The classifications of connectors pre-
sented by Akagi, Osaki, and Kikuci (1980) are
employed. Assembly parts are divided into four types
according to the connector’s combination property
(Table 1).



Table 2
Classification of assembly tools

Level Force
magnitude

Tool name Details on assembly
operation

T1 None Hand No tools are needed; i.e.,
the assembly is manual.

T2 Small Work-bench, handgun,
screw-driver, spanner,
pliers

Use a simple hand tool
to assemble, no strict
interference occurs
between components.

T3 Medium Screw driver, spanner,
racket spanner

Use simple hand tool to
assemble; other tools are
needed to support the
assembly work.

T4 Large Hacksaw, heavy
sledgehammer, crusher,
torsional twister, chassis

Use a special tool to
assemble the product;
the operation may cause
a destructive result.
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(2) Assembly tools. Even as expounded by Tseng et al.
(2004), assembly tools are classified into four catego-
ries according to the degree of difficulty of assembly
tasks (Table 2).

(3) Direction. In this study, six directions are took
account of connectors: +x, �x, +y, �y, +z and �z,
respectively.

(4) Connector-based precedence graph. The features of
connectors or the geometric information of related
parts conclude the precedence graph among connec-
tors. In this study, the precedence relationship is
assumed to be predetermined.

A stapler in Fig. 1(a) is an example for illustration. The
stapler amounted to eighteen components. According to
the combination types, assembly tools and directions for
these parts, nine connectors can be defined (Table 3). For
example, three parts comprise connector 8: the steel cover,
the bracket spring, and rivet 1, individually. Its combina-
tion property belongs to the fixed-not-disassembled combi-
nation (FND) shown in Table 1; the assembly direction is
y, and a hand vice (T3) should be used as the assembly tool.
Fig. 1(b) depicts the connector-based precedence graph for
the stapler’s connectors.

2.2. Connector-precedence-matrix P

For the input information of MAs, a connector-prece-
dence graph was utilized to establish the connector-prece-
dence-matrix P. pi,j indicates the element of the ith row
and the jth column in the matrix P. When the ith connector
should be assembled after the jth connector, pi,j = 1; other-
wise, pi,j = 0. In the stapler example, the precedence-rela-
tionship graph (Fig. 1(b)) apparently demonstrates that
C2 should be assembled before C3 and C4, and C8 should
be assembled after all other connectors. Parts of the sta-
pler’s connector-precedence-matrix P can be known:
p3,2 = p42 = 1 and p8,0 = p8,1 = p8,2 = p8,3 = p8,4 = p8.5 =
p8.6 = p8,7 = 1 (Fig. 2(a)).
2.3. Connector-engineering-data-similarity-matrix S

The design of the fitness function is determined by the
similarity of the engineering data of the connector. There-
fore, connector-engineering-data-similarity-matrix S is cre-
ated first of all. Si,j represents the element of the ith row
and the jth column in the matrix S, specifically, the engi-
neering-data-similarity of the ith and the jth connectors.
The value of Si,j can be calculated by formula (1):

Si;j ¼ W c � Ci;j þ W d � Di;j þ W t � T i;j ð1Þ

where

Si,j represents the similarity between connector i and
connector j; if i = j, then Si,j = 0; i, j = 1,2,3, . . . ,m; m
is the number of connectors;
Wc is the weight of the combination property;
Wd is the weight of the direction property;
Wt is the weight of the tool property;
Ci,j is the combination condition between the connec-
tors. When the combination property of connector Ci

and Cj is the same, Ci,j = 1; otherwise, Ci,j = 0;
Di,j is the direction condition between the connectors.
When the direction property of connector Di and Dj is
the same, Di,j = 1; otherwise, Di,j = 0;
Ti,j is the tool condition between the connectors. When
the tool property of connector Ti and Tj is the same,
Ti,j = 1; otherwise, Ti,j = 0.

In contrast with the Guided-GAs (Tseng, 2006), the
weight of the engineering data of the connector in formula
(1) is all settled on 1.

2.4. Coding for chromosomes

The usage of decimal numbers is towards the genetic
coding of chromosomes in this paper. The chromosome
length equals the number of connectors; the numeral
stands for the connector number; the location of the
numeral indicates the assembly sequence of connectors.
Fig. 3 illustrates a chromosome of the stapler. The assem-
bly sequence of the connectors is accordingly
3! 2! 0! 1! 4! 8! 5!6! 7. The mark ‘!’
denotes the precedence order of the connectors. For exam-
ple, 1! 4 signifies that connector C1 should be assembled
prior to connector C4.

2.5. Fitness function

The fitness function in this paper is determined by the
similarity of the engineering data of the connectors because
the arrangement of similar connectors can reduce the num-
ber of changes in the assembly tools and the assembly
direction, thus indicating the assembly task time is also
low. This viewpoint can be inferred from Göngör and
Gupta’s research (1997). Therefore, the calculation of the
fitness function is based upon connector-similarity-matrix



Fig. 1. Stapler: (a) graph of parts and (b) connector-based precedence graph.
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S, as shown in Fig. 2(b). Then the sum of the similarity of
the engineering data of two neighboring connectors in a
chromosome is calculated as follows.

Fitness value ðF Þ ¼
Xm

h¼1

SG
h;hþ1 ð2Þ

SG
h;hþ1 denotes the information similarity of the connector in

the hth position and the connector in the (h + 1)th position;
h = 1,2,3, . . . ,m; m is number of connectors.

Take the chromosome of the stapler in Fig. 3 as an
example. According to formula (2) and Fig. 2(b), similarity
matrix S can be obtained. Thus, the value of the fitness
function of this chromosome, ðF Þ ¼ SG

0;1 þ SG
1;2 þ SG

2;3þ
SG

3;4 þ SG
4;5 þ SG

5;6 þ SG
6;7 þ SG

7;8 ¼ 2:16.
The term SG

h;hþ1 indicates the similarity in engineering
data of the connector corresponding to the hth location
and the connector corresponding to the (h + 1)th location
in chromosome G. In the chromosome example shown in
Fig. 3, the connectors stored in the first and second loca-
tions are connectors C3 and C2. From Fig. 2(b),
SG

1;2 ¼ 0:5 is known. If connector C5 comes immediately
after connector C3, then they have the highest degree of



Table 3
Connector information for stapler

No. Connector
name

Combination
type

Direction Tool Component
owned by
connector

C0 Interference fit FND �y T3 10,11,12,13,14
C1 Interference fit FND y T3 12,15,16,17
C2 Spring MD �x T1 7,9
C3 Insert FND �x T1 6,9
C4 Spring MD �x T1 6,7
C5 Insert FND x T1 8,9
C6 Snap fit MD �y T1 6,5,4
C7 Interference FND y T3 1,2,3
C8 Interference FND z T3 1,4,8,12,18

(1) FD, fixed fastener disassembled, (2) FND, fixed fastener not disas-
sembled, (3) MD, movable fastener disassembled, (4) MND, movable
fastener not disassembled.

C0 C1 C2 C3 C4 C5 C6 C7 C8

C0 0 0 0 0 0 0 0 0 0

C1 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0

C3 0 0 1 0 0 0 0 0 0

C4 0 0 1 0 0 0 0 0 0

C5 0 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 0 0

C7 0 0 0 0 0 0 0 0 0

C8 1 1 1 1 1 1 1 1 0

(a)

C0 C1 C2 C3 C4 C5 C6 C7 C8

C0 0 0.83 0 0.5 0 0.5 0.33 0.83 0.83

C1 0.83 0 0 0.5 0 0.5 0 1 0.83

C2 0 0 0 0.5 1 0.33 0.83 0 0

C3 0.5 0.5 0.5 0 0.5 0.83 0.33 0.5 0.5

C4 0 0 1 0.5 0 0.33 0.83 0 0

C5 0.5 0.5 0.33 0.83 0.33 0 0.33 0.5 0.5

C6 0.33 0 0.83 0.33 0.83 0.33 0 0 0

C7 0.83 1 0 0.5 0 0.5 0 0 0.83

C8 0.83 0.83 0 0.5 0 0.5 0 0.83 0

(b) 

Fig. 2. Initial connector-based information for stapler: (a) precedence-
relationship-matrix P and (b) similarity matrix S for engineering
information.

2 840 5 613 7

Connector Number

Chromosome
value

Chromosome
position 1 8765432 9

Fig. 3. Coding of chromosome for stapler.
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similarity, which is 0.83. For each location h, an ideal sim-
ilarity coefficient, maxiðSG

h;iÞ, is defined as the maximum
degree of similarity between those two adjacent connectors.
In this example, max7ðSG

1;7Þ ¼ 0:83. The ratio of fitness is
therefore used as the criterion for the generation of the
genetic crossover block in this paper, and as illustrated
below:

Rh ¼
SG

h;hþ1

max
i
ðSG

h;iÞ
ð3Þ

where

Rh stands for the fitness ratio of the h position of chro-
mosome G; h = 1,2,3, . . . ,m; m is number of connectors;
maxiðSG

h;iÞ is defined as the maximum degree of similarity
between the connector of the hth position and the adja-
cent connectors.

In the foregoing example, where individual values are
SG

1;2 ¼ 0:5; max7ðSG
1;7Þ ¼ 0:83, and the ratio Rh = 0.602.

The more the value of Rh, the greater the probability,
that the genetic coding in the hth location of the chro-
mosome is blocked. For any two connectors, the ideal
situation exists when Rh = 1. On the contrary, when the
value of Rh is smaller, the probability that the genetic
coding in the hth location of the chromosome is blocked
is smaller.
3. Memetic algorithms with guided local search

3.1. Procedure for memetic-oriented algorithms

The main procedure for MAs is shown in Fig. 4. The
authors take advantage of the binary-tree algorithms to
generate the initial population (Step 1). A feasible solution
can be found through the binary-tree algorithms. For the
sake of better quality solution, the crossover and mutation
mechanism of traditional GAs are employed to disturb the
initial feasible solution (Steps 3 and 4). The disturbed infea-
sible chromosome array can be transferred into feasible
solution again through the same binary-tree algorithms
(Step 5). Guided-GAs play the roles of local search method
are proposed by Steps 6–8. The guided crossover and
guided mutation are aimed for solving the constraint prob-
lem in ASP.

Through the connector-precedence-matrix P and con-
nector-engineering-data-similarity- matrix S, the procedure
for the algorithms of the MAs is as follows:

Step 1: Through the binary-tree concepts, six steps are
utilized to generate N feasible chromosomes for
the initial population (Section 3.2).

Step 2: Calculate the fitness value of each chromosome,
which will serve as the criterion for the evaluation
of chromosomes (Section 2.5).



PMX corssover
                        (Step 3)

Insert mutation method
                        (Step 4)

Use binary-tree to
generate feasible
solutions         (Step 5)

Guided crossover
(Step 7)

Guided mutation
                         (Step 8)

Satisfy stopping criteria
of Guided-GAs (Step 9)

Choose the next
generation population
                    (Step 10)

Yes

No

Precedence
relationship-

matrix P Similarity-
matrix S of
engineering
informationBuild binary tree and

generate initial
population.    (Step 1)

Calculate fitness value.
Equaltion(2)     (Step 2)

Calculate fitness value.
Equaltion(2)     (Step 6)

Yes

Global search

Local search
and solve
constraint
problem No

Stop and
generate optimal

solutions
(Step11)

Satisfy stopping
criteria of global search

 (Step11 )

Fig. 4. Flowchart for memetic algorithms.
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Step 3: Process crossover according to the PMX method
(Section 3.3).

Step 4: Process mutation according the insert mutation
method (Section 3.4).

Step 5: Convert the infeasible solution to feasible solution
through the binary-tree algorithms (Section 3.2).

Step 6: Calculate the fitness value of each chromosome
(Section 2.5).

Step 7: Process the guided-crossover method, twelve
major steps for adjustment are necessary (see Sec-
tion 3.5).

Step 8: Process the guided mutation method, there are six
steps for the guided mutation operation (see Sec-
tion 3.6).

Step 9: Determine if the evaluation for local search
should be terminated. The number of generations
is the termination index in this paper.
(a) If the output does not meet the termination

condition, then execute Step 6.
(b) If the output meets the termination condition,
then execute Step 10.
Step 10: Choose chromosomes from the parent and off-
spring generation.

Step 11: Determine whether the evaluation for global
search should be terminated or not. The maxi-
mum number of generations is the termination
index in this paper.
(a) If the output does not meet the termination

condition, then execute Step 3.
(b) If the output meets the termination condition,

stops the algorithm and generates the near-
optimal assembly sequence.
3.2. Combining the binary-tree concept to generate initial

population

The authors introduced a connector-based binary-tree
structure into the basis of the connector precedence rela-



H.-E. Tseng et al. / Expert Systems with Applications 33 (2007) 451–467 457
tionships. A binary tree is a tree diagram illustrating the
hierarchical data structure for the purpose of data stor-
age, organization, and retrieval (Wess, 1999). Further-
more, the feasible assembly sequence solutions are listed
according to the inorder traversal rank. These feasible
sequence solutions will serve as the initial populations
of the MAs. In creating a connector-based binary-tree
data structure, the requirements that the connector on
the left child node point should be assembled before the
connector on the root point and that the connector on
the right child node point has the lowest priority of
assembly should be satisfied. Related terminologies are
defined as follows:

G represents a chromosome; a chromosome of the sta-
pler example is shown in Fig. 3;
gh signifies the corresponding connector of the hth loca-
tion of chromosome G; h = 1,2,3, . . . ,m, and m is the
number of connectors. In Fig. 3, the corresponding con-
nector of g1 is C3;
r stands for the root node point;
l denotes the leaf node point.

The pertinent steps of the connector-based binary-tree
are listed below:

Step 1.1: Randomly generate a chromosome, G.
Step 1.2: Set h = 2.
Step 1.3: Set g1’s corresponding connector at root node

point r.
Step 1.4: Set gh’s corresponding connector at leaf node

point l, and decide the precedence relationship
of r and l.
(1) If pr,l = 1, the priority of assembly sequence of

node point l’s corresponding connector is
higher than that of node point r’s correspond-
ing connector.
(a) If r’s left child node point is not empty,

then set r’s left node point at the new root
node point r and repeat Step 1.4.

(b) If r’s left child node point is empty, then
insert l at r’s left node point; set
h = h + 1, and execute Step 1.5.
(2) If pr,l = 0, there is no limit in the assembly
precedence between l’s corresponding connec-
tor and r’s corresponding connector.
(a) If r’s right child node point is not empty,

then set r’s right node point at the new
root node point r, and execute Step 1.4.

(b) If r’s right child node point is empty, then
insert l at r’s right node point; set
h = h + 1, and execute Step 1.5.
Step 1.5: Check whether h = m. If h = m, then execute Step

1.6; otherwise, execute Step 1.3.
Step 1.6: List feasible solutions according to the inorder

traversal rank and stop the algorithm.
3.3. PMX crossover method

In the Step 3, the PMS (partial mapped crossover) cross-
over is used (Gen & Cheng, 2000). The core steps of PMX
are as follows:

Step 3.1: Randomly choose two parents.
Step 3.2: Randomly select two crossover points and gener-

ate a crossover region in the two chromosomes.
Step 3.3: Transform connectors for the crossover region

between the two parents and generate two new
offsprings.

Step 3.4: Generate exchange rules according to relation-
ship in the crossover region of parents.

Step 3.5: Refer to the exchange rules in Step 3.4 and adjust
unreasonable econnectors in the new offsprings.
3.4. Insert mutation method

In the Step 4, the insert mutation method is utilized to
deal with the mutation mechanism. Two cutting points are
randomly selected from the array of individual. The array
behind the point replaces the array in front of the point, and
the other arrays move one location backwards accordingly.

3.5. Guided-crossover method

Guided-crossover is the Step 7 in Fig. 4. The guided-
crossover method is primarily composed of two stages: (1)
generate the crossover block of the chromosome at stage
1, and (2) exchange the chromosome’s genetic coding at
stage 2.

3.5.1. Generate crossover block

If block-start indicates the initial location of the cross-
over block of the chromosome, and block-size records the
size of the crossover block, the pertinent algorithms can
be described as follows:

Step 7.1: Set h = 1.
Step 7.2: Randomly generate an integral, n, for the judg-

ment of block size; n = 2, . . . ,m, and m is the
number of connectors;

Step 7.3: Set block-start = h, and block-size = 1.
Step 7.4: Randomly generate a floating point number, p;

0 < p < 1.
Step 7.5: According to formula (3), calculate the fitness

ratio Rh of the connector in the hth location of
the chromosome.

Step 7.6: Compare the size of p and Rh.
(1) If Rh = p, the genetic coding in the hth loca-

tion of chromosome G will be blocked; then,
set h = h + 1, block-size = block-size + 1, and
execute Step 7.4.

(2) If Rh < p, the genetic coding in the hth loca-
tion of chromosome G will not be blocked.
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(a) If block-size < n, then set h = h + 1, and
execute Step 7.3.

(b) If block-size = n, then execute Step 7.7.

Step 7.7: Stop searching and set block-start at the initial

location and block-size as the size of the crossover
block.
 (a) Chromosomes before binary-tree transforming

3 540 6 712 8

2 840 5 613 7

2 845 7 631 0

G1

G2
3.5.2. Exchange genetic coding of chromosome

The purpose of adopting the guided-crossover method is
to ensure that, after the crossover procedure, the chromo-
some in the offspring generation meets with the constraints
of the assembly problem. The constraints, therefore, should
be considered during the duplication and exchange of the
genetic coding of the chromosome. There are five steps in
the exchange of the genetic coding of the chromosome.

Step 7.8: Randomly choose two chromosomes from the
initial population, parent1 and parent2.

Step 7.9: Generate the crossover blocks of these two chro-
mosomes, and divide the genetic block into three
sections: block-front, block, and block-rear.

Step 7.10: Duplicate the connectors in the block of chro-
mosomes parent1 and parent2 and place them
on the corresponding locations of the offspring
chromosomes offspring1 and offspring2.

Step 7.11: According to the precedence relationships of the
connectors in chromosome parent2, duplicate
the connectors in the block-front area of chro-
mosome parent1 and place them on the corre-
sponding locations of chromosome offspring1.
In the same way, duplicate the connectors in
the block-front area of chromosome parent2

and place them on the corresponding locations
of chromosome offspring2, according to the pre-
cedence relationships of the connectors in chro-
mosome parent1.

Step 7.12: According to the precedence relationships of the
connectors in chromosome parent2, duplicate the
connectors in the block-rear area of chromosome
parent1 and place them on the corresponding
locations of chromosome offspring1. Similarly,
duplicate the connectors in the block-rear area
of chromosome parent2 and place them on the
corresponding locations of chromosome off-

spring2, according to the precedence relation-
ships of the connectors in chromosome parent1.
 (b) Chromosomes after binary-tree transforming

2 745 6 031 8

G1

G2

Fig. 5. Transformation for the binary-tree algorithms: (a) chromosomes
before binary-tree transforming and (b) chromosomes after binary-tree
transforming.
3.6. Guided mutation

Afterward a guided mutation method is proposed to
solve the problem so that the offspring generations will
be feasible chromosomes in the mutation procedure. If
cut-point is the node point in the chromosome that will
be cut for mutation, and combine-point is the node point
in the chromosome that will be combined for mutation,
then the algorithm for the guided mutation can be
described as follows:

Step 8.1: Randomly select a chromosome from the initial
population.

Step 8.2: Randomly generate an integer n, n is between 1
and m. m is the number of connectors.

Step 8.3: Randomly generate a cut-point, and set combine-

point = cut-point + 1.
Step 8.4: Check the assembly precedence relationship

between the connector on the cut-point and that
on the combine-point connector.
(a) If the connector on the cut-point has a higher

priority of assembly sequence than that on the
combine-point, then execute Step 8.5.

(b) If the connector on the cut-point does not have
a higher priority of assembly sequence than
that on the combine-point, then add 1 to the
combine-point, and execute Step 8.4 again.
Step 8.5: Insert the connector on the cut-point to the loca-
tion of combine-point-1.

Step 8.6: Repeat the procedure form Steps 8.1–8.5 m/n
times.
3.7. Exemplification

In this article, stapler example is utilized to illustrate the
aforementioned algorithm shown as follows:

Step 1: Generate feasible chromosomes for the initial
population.

Step 1.1: Randomly generate two chromosomes, G1 and
G2, as shown in Fig. 5(a). We use the chromo-
some G1 to illustrate the binary-tree concept.

Step 1.2: Set h = 2.
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Step 1.3: Set g1’s corresponding connector C3 at root
node point r.

Step 1.4: Set g2’s corresponding connector C2 at the
leaf node point l. Because P3,2 = 1 and since
r’s left node point is an empty one, insert l

at r’s left node point (Fig. 6(a)), and set
h = 2 + 1 = 3. Execute Step 1.5.

Step 1.5: The length of the stapler’s genetic chromo-
some is 9. Because h does not equal to 9,
repeat Step 1.3.

Step 1.3: Set g1’s corresponding connector C3 at the
root node point r.

Step 1.4: Set g3’s corresponding connector C0 at the
leaf node point l. Because P3,0 = 0 and since
r’s right node point is empty, insert l at
r’s right node point (Fig. 6(b)), and set
h = 3 + 1 = 4. Execute Step 1.5.
C3

C2 C0

C1

root

NULL NULL

NULL

NUL

NULL

N

C3

C2

NULLNULL

r

l

NULL

(c)

(a)

Fig. 6. Connector-based binary tree: (a) insert connector C3 into binary tree, (
example.
Step 1.5: Because i does not equal to 9, repeat Step 1.3.
One by one, in the same way, insert all con-
nectors into the connector-based binary-tree
diagram, as shown in Fig. 6(c).

Step 1.6: According to the inorder traversal rank, list
the order of the feasible assembly sequence
for chromosome G1: 2! 3! 0! 1! 4!
5! 6! 7! 8. In the same way, we can get
the same feasible solution 1! 2! 5! 3!
4! 7! 6! 0! 8 for G2 (Fig. 5(b)).

Step 2: Calculate the fitness value of each chromo-
some. The fitness value F for G1 ¼ SG

0;1þ
SG

1;2 þ SG
2;3 þ SG

3;4 þ SG
4;5 þ SG

5;6 þ SG
6;7 þ SG

7;8 ¼
3:32, The fitness value F for G2 = 2.82.

Step 3: Process the PMX crossover method.
Step 3.1: G1 and G2 are hypothesized as chromosomes

for the crossover process in Fig. 5(b).
C4

C8

C5

C6

C7

L

NULLNULL

NULL

ULL

C3

C2

NULLNULL

r

l

C0

NULLNULL

(b)

b) insert connector C1 into binary tree and (c) build binary tree for stapler
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Before
mutation

After
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Fig. 8. Insert mutation method for offspring1 example.
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Step 3.2: Randomly generate the crossover region in
the chromosomes of G1 and G2, as shown in
Fig. 7(a).

Step 3.3: Exchange the connectors in the crossover
region between the G1 and G2. Generate ini-
tial offsprings termed child1 and child2. The
duplicated connector C3 and C7 for child1

can be found in Fig. 7(b). Furthermore, the
duplicated connector C0 and C1 for child2

can be located.
Step 3.4: Create the exchange rule from the duplicated

connectors in Step 3.3, as shown in Fig. 7(c).
Two rules C0 M C5 M C7C and C1 M C3 can
be found.

Step 3.5: Adjust the connectors in child1and child2

according the exchange rule in Step 3.4. Gen-
erate the new chromosomes offspring1 and off-

spring2 (Fig. 7(d)).
Step 4: Process the insert mutation method. Take the

offspring1 in Step 3.5 as an example. Location
2 (C3) and 5 (C4) are first randomly selected
from the offspring1. Location 5 is removed
to location 2. Then C5, C1, C0, C6, C7, C8

are removed one unit backwards, as shown
in Fig. 8. The sequence in offspring1 is
2! 4! 3! 5! 1! 0! 6! 7! 8. In
C2 C3 C0 C1 C4 C5 C6 C7 C8

C1 C2 C5 C3 C4 C7 C6 C0 C8

parent1

parent2

(a)

child1

child2

(b)

0 5 7

1 3

(c)

offspring1

offspring2

(d)

C2 C3 C5 C3 C4 C7 C6 C7 C8

C1 C2 C0 C1 C4 C5 C6 C0 C8

C5 C3 C4 C7

C0 C1 C4 C5

C2 C3 C5 C3 C4 C7 C6 C7 C8

C1 C2 C0 C1 C4 C5 C6 C0 C8

Fig. 7. PMX crossover mechanism for stapler.
the same way, the sequence in offspring2 is
1! 4! 2! 7! 3! 5! 6! 0! 8.

Step 5: Through the binary-tree algorithms Step 1,
we can transform the offspring1 to 2!
4! 3! 5! 1! 0! 6! 7! 8, in the
same way, a feasible solution for offspring2

can be solved for 1! 2! 4! 7! 3! 5!
6! 0! 8.

Step 6: Fitness vale in offspring1 can be calculated by
formula (3) and Fig. 3(b). At last, F = 4.82. In
the same way, the fitness value F = 3.82 in
offspring.

Step 7: Process the guided-crossover method.
Step 7.1: Chromosome offspring1 is introduced here;

Set h = 1.
Step 7.2: Randomly generate an integral n = 3;

n = 2, . . . , 9.
Step 7.3: Set block-start = 1, and block-size = 1.
Step 7.4: Randomly generate a floating-point number,

p = 0.5.
Step 7.5: According to formula (3), calculate the fitness

ratio Rh of the connector in the first location
of the chromosome: R1 = 1.

Step 7.6: Compare the size of p and Rh. Because
Rh > p = 0.5, set block-size = 1 + 1 = 2 and
h = 1+1 = 2. Execute Step 7.4 again.

Step 7.4: Again, randomly generate p = 0.63.
Step 7.5: Calculate the fitness ratio Rh of the connector

in the second location of chromosome:
R2 = 0.5.

Step 7.6: Compare the size of p and R2. Because
R2 < p = 0.63 and block-size < n, set
h = 2 + 1 = 3, and execute Step 3 again. In
the same way, the crossover block of the chro-
mosome for offspring1 can be calculated as
shown in Fig. 9.

Step 7.7: The crossover block of the chromosome for
offspring2 can be found in the same method.

Step 7.8: Randomly choose two chromosomes from
the initial population, parent1 and parent2.

Step 7.9: Generate the crossover blocks of these two
chromosomes, and divide the genetic block
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Fig. 9. Block area of offspring1 chromosome.
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Fig. 11. Operation of guided mutation.

H.-E. Tseng et al. / Expert Systems with Applications 33 (2007) 451–467 461
into three sections: block-front, block, and
block-rear, as shown in Fig. 10(a).

Step 7.10: Only the chromosome of the new offspring
generation, Q1, to offspring1 is discussed here.
Duplicate connectors C5, C1, and C0 in the
block area of offspring1 for Q1 directly
(Fig. 10(b)).

Step 7.11: According to the precedence relationships of
the connectors in chromosome offspring2,
C2! C4! C3, duplicate connectors C2, C4,
and C3 in the block-front area of chromosome
parent1 and place them on the corresponding
locations of chromosome offspring1 Q1 (see
Fig. 10(c)).

Step 7.12: Duplicate connectors C6, C3, and C9 in the
block-rear area of chromosome parent1 and
place them on the corresponding locations
of chromosome offspring1 according to the
precedence relationships of the connectors in
chromosome parent2, C7! C6! C8, as
shown in Fig. 10(d).
72 0 6 8154 3offspring1

block block-rearblock-front

4 7 5 86321offspring2

block-front block block-rear

72 0 6 8154 3

block block-rearblock-front

04 7 5 86321

5 1 0

(a)

(b)

offspring1

offspring2

Q1

of

of

of

o

Fig. 10. Operation of
Step 8: Process the guided mutation method.
Step 8.1: Randomly select a chromosome from the ini-

tial population. Only the chromosome of off-

spring1 is discussed here.
Step 8.2: Randomly generate an integer n = 3,the val-

ues of n are between 1 and 9.
Step 8.3: Randomly generate cut-point = 4, which is

the genetic coding on the 4th location of the
chromosome (see Fig. 11(a)) and set com-

bine-point = cut-point = 4+1 = 5.
72 0 6 8154 3

block block-rearblock-front

04 7 5 86321

5 1 02 4 3

(c)

72 0 6 8154 3

block block-rearblock-front

04 7 5 86321

5 1 02 4 3 7 6 8

(d)

Q1

Q1

fspring1

fspring2

fspring1

ffspring2

guided crossover.
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Step 8.4: Check the assembly precedence relationship
between the connector on the cut-point and
that on the combine-point connector. Because
the connector on the cut-point does not have a
higher priority of assembly sequence than
that on the combine-point, set combine-
point + 1 = 6, and execute Step 8.3 again. In
the same way, it can be specified combine-

point = 9,as shown in Fig. 11(b).
Step 8.5: Insert connector C5 on the cut-point to the

location of combine-point-1, as shown in
Fig. 11(c).

Step 8.6: Repeat the procedure from Steps 8.2–8.5 three
times and stop the mutation mechanism.

Step 9: Repeat the procedure of MAs until stopping
criteria is satisfied.

Step 10: Generate new population.
Steps 11, 12: Repeat the procedure until stopping criteria is

satisfied.
Fig. 12. Illustration of electric-fan: (a) exploded drawing and (b) enlarged
scale drawing for small parts in (a).
4. Practical examples

The algorithms utilized in Fig. 4 is written in Boland
C++6.0. The test environment is that of a Pentium
2.4 GMHz PC at 512 MB RAM. A stapler, an electric
fan and a laser printer were exemplified to compare the fea-
sibility of MAs and Guided-GAs. The local search loop is
predetermined 10 generations which have been verified by
many tests. On the basis of the predetermined local 10 gen-
erations, we can group the verification viewpoints into two
aspects: (1) preset the maximum number of generations
and search the average fitness and the maximum fitness
value, and (2) preset the fitness value and determine the
computation time and average generation number,
respectively.

In the first scenario, the crossover rate is set at 70%; the
mutation rate, 30%; the population size, 51; and the maxi-
mum number of generations, 1500. In terms of the engi-
neering data, the combination type, assembly tools, and
assembly direction are equally important. In accordance
with the principle of connector rule (Tseng & Li, 1999),
25 connectors are determined in associated with the electric
fan example which consists of 40 components (Fig. 12).
The precedence graph for the fan connectors, thereupon,
can be ascertained (Fig. 13). Under suchlike condition,
the Guided-GAs and MAs implement individually 10 tests
for the sake of the required comparisons. From the results
of Guided-GAs in Table 4, the average computation time
of the overall 10 trials took up 2.808 s, the average fitness
value was 16.133, and the maximum fitness value was
16.667. In addition, the average computation time of
MAs engaged 3.951 s, the average fitness value was
18.285, and the maximum fitness value was 18.333.
Fig. 14 depicts the convergence diagrams of the two algo-
rithms. In the second example, the printer consists of 92
parts, from which 91 connectors are assigned. Figs. 15
and 16 display the part drawing and the connector-prece-
dence graph, respectively. The results of comparison for
Guided-GAs and MAs can be found in Table 5. From
the results of Guided-GAs in Table 5, the average compu-
tation took up 18.5427 s, the average fitness value was
75.595, and the maximum fitness value was 76.67. Further-
more, the average computation time of MAs engaged
25.97 s, the average fitness value was 79.096, and the max-
imum fitness value was 80. Fig. 17 presents the convergence
diagrams of these two algorithms. The critical point here
indicates that if we sacrifice a little computation time for
achieving more superior solution quality, the MAs is
undoubtedly a preferable selection for assembly planning
decision.

In the second scenario, the crossover rate is designated
at 70%, the mutation rate is 30%, and the population size
is 51. In the electric fan’s example, the fitness value is
objectively predetermined to 16. In 2 of 10 tests, feasible
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Fig. 13. Precedence graph of connectors for electric fan.
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Table 4
Comparison between guided-GAs and memetic algorithms for electric fan

Method Average
run time

Average fitness
value

Max fitness
value

Guided-GAs 2.808 16.133 16.667
Memetic algorithms 3.951 18.285 18.333
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Fig. 14. Convergence plot of electrical fan.
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solutions could not be found, whereas, the predetermined
value could be found in every course of the proposed
MA procedure. The computation time for Guided-GAs
took up 0.26275 s, and the average generation is 75.13.
In addition, the computation time for MAs engaged
0.1493 s, the global search loop is 4.3 generation. In the
printer’s example, the fitness value is objectively predeter-
mined to 76. In 3 of 10 tests, feasible solutions could not
be found, whereas, the predetermined value could be found
in every course of the MA procedure. The computation
time for Guided-GAs took up 11.5465 s, and the average
generation is 911.29. Furthermore, the computation time
Fig. 15. Laser-printer parts. Parts numbered 48–92 are screws: (a) expl
for MAs engaged 3.0483 s, the global search loop is 14.9
generation. The results of the illustrated examples demon-
oded drawing and (b) enlarged scale drawing of screw parts in (a).
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strate that, in terms of solution quality and efficiency, MAs
are better than Guided-Gas indeed. By means of the pro-
posed tests, it can be observed that MAs can rise above
the local optimal problem owing to the global mechanism



Table 5
Comparison between Guided-GAs and memetic algorithms for laser
printer

Method Average
run time

Average fitness
value

Max fitness
value

Guided-GAs 18.5427 75.595 76.67
Memetic algorithms 25.97 79.096 80
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Fig. 17. Convergence plot of laser printer.
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consisted of the PMX crossover and insert mutation
accordingly.

5. Conclusions

In the prior research, Tseng et al. (2004) takes the lead in
advocacy to associate with genetic algorithms and connec-
tor-based assembly planning. Using genetic algorithms fea-
tures of speed and flexibility can conform to the various
applications even as the extension to assembly line balanc-
ing. Concerning the situation with large-scale constraint
assembly problems, however, GAs will generate quantities
of infeasible solutions during the evolution procedure, and
then failed in searching the feasible solution on occasion.
Accordingly, a Guided-GA approach proposed by Tseng
(2006) copes with the assembly planning problems that
consist of large-scale constraints. In general, Guided-GAs
can search out high-quality solutions faster than traditional
genetic algorithms, but short on reliability to find the glo-
bal-optimal solutions. As a result, in this paper we focus
on improving the performance of Guided-GAs, and meme-
tic algorithms are proposed further to resolve all perplexi-
ties occurred in the foregoing methods. The Guided-GAs in
consequence are used as the local search mechanism to
work out the extensive constraints in assembly planning,
and in the appearance of Guided-GAs, the global search
engine comprised by PMX crossover and inserted mutation
is employed to enhance the quality of Guided-GAs. In con-
trast with Guided-GAs, the entirety of solution quality of
MAs enhances around 4.6–13.3%. Although the computa-
tion time of MAs increased around 40% as compared with
Guided-GAs, in the future it seems meaningless due to a
rapid expansion of computer technology. Suchlike objec-
tives eventually carry off the validity through exemplified
pilot schemes.

Randomly local search can be delineated as one of many
aspects in the future. The proposed approach can improve
the computation time of MAs. In addition, it is hypothe-
sized in the current study that the connector-based prece-
dence relationships among connectors graph are
predetermined. The precedence relationships could be
automatically generated from the recognition of CAD data
structure, and can be pay close attention in the future.
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